
Proof of Frisch-Waugh-Lovell (FWL) Theorem (Based on Freedman (2005)) As-
sume that X has rank k + 1 ≤ n (rules out perfect multicollinearity). Let β̂ be a minimizer
of the least squares objective function. Recall our setup:

In the proof, we will be using a couple of facts of the least squares fit:

Orthogonality X′e = 0, i.e. the least squares residual vector is orthogonal to the columns
of X.

Uniqueness If β̃ is another (k + 1) × 1 vector with a residual vector Y −Xβ̃ orthogonal
to the columns of X, then β̂ = β̃.

Partition X as X =
(
X−k | Xk

)
. Similarly, partition β̂ =

(
β̂−k

β̂k

)
, where β̂−k is a k× 1

vector while β̂k is a scalar.

1. Apply least squares and obtain the linear regression of (a) Y on X, (b) Y on X−k, and
(c) Xk on X−k.

2. As a result, you can split the actual values into fitted values plus residuals.

(a) Least squares coefficient vector β̂ = (X′X)
−1

(X′Y) and Y = Xβ + e

(b) Least squares coefficient vector γ̂ =
(
X′

−kX−k

)−1 (
X′

−kY
)

and Y = X−kγ̂ + η̂

(c) Least squares coefficient vector δ̂ =
(
X′

−kX−k

)−1 (
X′

−kXk

)
and Xk = X−kδ̂ + v̂

3. Now, apply least squares again to obtain the linear regression of η̂ on v̂. You will
obtain a least squares coefficient (now, a scalar)

θ̂ = (v̂′v̂)
−1

v̂′η̂.

Our task is to prove that β̂k = θ̂.

4. I have to show that η̂− v̂θ̂ is orthogonal to the columns of X. To see this, I start with
the first k columns of X.

X−k
′
(
η̂ − v̂θ̂

)
= X−k

′η̂ −X′
−kv̂θ̂ = 0− 0 · θ̂ = 0.

The second to the last equality follows from the fact that η̂ and v̂ are both orthogonal
to the first k columns of X−k.
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5. Next, I show that η̂ − v̂θ̂ is orthogonal to the last or (k + 1)th column of X. Observe
that

X′
kv̂ =

(
X−kδ̂ + v̂

)′
v̂ = δ̂′X ′

−kv̂ + v̂′v̂ = v̂′v̂.

The last equality follows from the fact that v̂ is orthogonal to the first k − 1 columns
of X−k. Therefore,

X′
k

(
η̂ − v̂θ̂

)
= X′

kη̂ −X′
kv̂θ̂

= X′
kη̂ − v̂′v̂θ̂

= X′
kη̂ − v̂′η̂

= (X′
k − v̂′) η̂

=
(
X−kδ̂

)′
η̂

= δ̂′X′
−kη̂

= 0

The second equality uses the immediately preceding result. The third equality follows
from

θ̂ = (v̂′v̂)
−1

v̂′η̂ ⇒ v̂′v̂θ̂ = v̂′η̂.

The fourth equality follows from factoring out a common term. The fifth equality
follows from the least squares fit Xk = X−kδ̂ + v̂. The last equality follows from
orthogonality.

6. As a result,

Y = X−kγ̂ + η̂

= X−kγ̂ + v̂θ̂ +
(
η̂ − v̂θ̂

)
= X−kγ̂ +

(
Xk −X−kδ̂

)
θ̂ +

(
η̂ − v̂θ̂

)
= X−k

(
γ̂ − δ̂θ̂

)
+Xkθ̂ +

(
η̂ − v̂θ̂

)
=

(
X−k | Xk

)
︸ ︷︷ ︸

X

(
γ̂ − δ̂θ̂

θ̂

)
︸ ︷︷ ︸

β̃

+
(
η̂ − v̂θ̂

)
︸ ︷︷ ︸

residual

.

7. So, we have found another β̃, which just like β̂, has residuals Y−Xβ̃ = η̂− v̂θ̂ which
are also orthogonal to the columns of X. The uniqueness of the least squares minimizer
implies that β̂ has to be equal to β̃:

β̂ =

(
β̂−k

β̂k

)
=

(
γ̂ − δ̂θ̂

θ̂

)
.

Therefore, β̂k = θ̂.
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